\(\int \frac {(d+e x^2)^2}{\sqrt {a+c x^4}} \, dx\) [152]

   Optimal result
   Rubi [A] (verified)
   Mathematica [C] (verified)
   Maple [C] (verified)
   Fricas [A] (verification not implemented)
   Sympy [C] (verification not implemented)
   Maxima [F]
   Giac [F]
   Mupad [F(-1)]

Optimal result

Integrand size = 21, antiderivative size = 264 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\frac {e^2 x \sqrt {a+c x^4}}{3 c}+\frac {2 d e x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {2 \sqrt [4]{a} d e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\left (3 c d^2+6 \sqrt {a} \sqrt {c} d e-a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt {a+c x^4}} \]

[Out]

1/3*e^2*x*(c*x^4+a)^(1/2)/c+2*d*e*x*(c*x^4+a)^(1/2)/c^(1/2)/(a^(1/2)+x^2*c^(1/2))-2*a^(1/4)*d*e*(cos(2*arctan(
c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticE(sin(2*arctan(c^(1/4)*x/a^(1/4))),1/2*2
^(1/2))*(a^(1/2)+x^2*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1/2)/c^(3/4)/(c*x^4+a)^(1/2)+1/6*(cos(2*arc
tan(c^(1/4)*x/a^(1/4)))^2)^(1/2)/cos(2*arctan(c^(1/4)*x/a^(1/4)))*EllipticF(sin(2*arctan(c^(1/4)*x/a^(1/4))),1
/2*2^(1/2))*(a^(1/2)+x^2*c^(1/2))*(3*c*d^2-a*e^2+6*d*e*a^(1/2)*c^(1/2))*((c*x^4+a)/(a^(1/2)+x^2*c^(1/2))^2)^(1
/2)/a^(1/4)/c^(5/4)/(c*x^4+a)^(1/2)

Rubi [A] (verified)

Time = 0.08 (sec) , antiderivative size = 264, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.190, Rules used = {1221, 1212, 226, 1210} \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\frac {\left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} \left (6 \sqrt {a} \sqrt {c} d e-a e^2+3 c d^2\right ) \operatorname {EllipticF}\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right ),\frac {1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt {a+c x^4}}-\frac {2 \sqrt [4]{a} d e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \arctan \left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {2 d e x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}+\frac {e^2 x \sqrt {a+c x^4}}{3 c} \]

[In]

Int[(d + e*x^2)^2/Sqrt[a + c*x^4],x]

[Out]

(e^2*x*Sqrt[a + c*x^4])/(3*c) + (2*d*e*x*Sqrt[a + c*x^4])/(Sqrt[c]*(Sqrt[a] + Sqrt[c]*x^2)) - (2*a^(1/4)*d*e*(
Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticE[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/
2])/(c^(3/4)*Sqrt[a + c*x^4]) + ((3*c*d^2 + 6*Sqrt[a]*Sqrt[c]*d*e - a*e^2)*(Sqrt[a] + Sqrt[c]*x^2)*Sqrt[(a + c
*x^4)/(Sqrt[a] + Sqrt[c]*x^2)^2]*EllipticF[2*ArcTan[(c^(1/4)*x)/a^(1/4)], 1/2])/(6*a^(1/4)*c^(5/4)*Sqrt[a + c*
x^4])

Rule 226

Int[1/Sqrt[(a_) + (b_.)*(x_)^4], x_Symbol] :> With[{q = Rt[b/a, 4]}, Simp[(1 + q^2*x^2)*(Sqrt[(a + b*x^4)/(a*(
1 + q^2*x^2)^2)]/(2*q*Sqrt[a + b*x^4]))*EllipticF[2*ArcTan[q*x], 1/2], x]] /; FreeQ[{a, b}, x] && PosQ[b/a]

Rule 1210

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 4]}, Simp[(-d)*x*(Sqrt[a +
 c*x^4]/(a*(1 + q^2*x^2))), x] + Simp[d*(1 + q^2*x^2)*(Sqrt[(a + c*x^4)/(a*(1 + q^2*x^2)^2)]/(q*Sqrt[a + c*x^4
]))*EllipticE[2*ArcTan[q*x], 1/2], x] /; EqQ[e + d*q^2, 0]] /; FreeQ[{a, c, d, e}, x] && PosQ[c/a]

Rule 1212

Int[((d_) + (e_.)*(x_)^2)/Sqrt[(a_) + (c_.)*(x_)^4], x_Symbol] :> With[{q = Rt[c/a, 2]}, Dist[(e + d*q)/q, Int
[1/Sqrt[a + c*x^4], x], x] - Dist[e/q, Int[(1 - q*x^2)/Sqrt[a + c*x^4], x], x] /; NeQ[e + d*q, 0]] /; FreeQ[{a
, c, d, e}, x] && PosQ[c/a]

Rule 1221

Int[((d_) + (e_.)*(x_)^2)^(q_)*((a_) + (c_.)*(x_)^4)^(p_), x_Symbol] :> Simp[e^q*x^(2*q - 3)*((a + c*x^4)^(p +
 1)/(c*(4*p + 2*q + 1))), x] + Dist[1/(c*(4*p + 2*q + 1)), Int[(a + c*x^4)^p*ExpandToSum[c*(4*p + 2*q + 1)*(d
+ e*x^2)^q - a*(2*q - 3)*e^q*x^(2*q - 4) - c*(4*p + 2*q + 1)*e^q*x^(2*q), x], x], x] /; FreeQ[{a, c, d, e, p},
 x] && NeQ[c*d^2 + a*e^2, 0] && IGtQ[q, 1]

Rubi steps \begin{align*} \text {integral}& = \frac {e^2 x \sqrt {a+c x^4}}{3 c}+\frac {\int \frac {3 c d^2-a e^2+6 c d e x^2}{\sqrt {a+c x^4}} \, dx}{3 c} \\ & = \frac {e^2 x \sqrt {a+c x^4}}{3 c}-\frac {\left (2 \sqrt {a} d e\right ) \int \frac {1-\frac {\sqrt {c} x^2}{\sqrt {a}}}{\sqrt {a+c x^4}} \, dx}{\sqrt {c}}+\frac {\left (3 c d^2+6 \sqrt {a} \sqrt {c} d e-a e^2\right ) \int \frac {1}{\sqrt {a+c x^4}} \, dx}{3 c} \\ & = \frac {e^2 x \sqrt {a+c x^4}}{3 c}+\frac {2 d e x \sqrt {a+c x^4}}{\sqrt {c} \left (\sqrt {a}+\sqrt {c} x^2\right )}-\frac {2 \sqrt [4]{a} d e \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} E\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{c^{3/4} \sqrt {a+c x^4}}+\frac {\left (3 c d^2+6 \sqrt {a} \sqrt {c} d e-a e^2\right ) \left (\sqrt {a}+\sqrt {c} x^2\right ) \sqrt {\frac {a+c x^4}{\left (\sqrt {a}+\sqrt {c} x^2\right )^2}} F\left (2 \tan ^{-1}\left (\frac {\sqrt [4]{c} x}{\sqrt [4]{a}}\right )|\frac {1}{2}\right )}{6 \sqrt [4]{a} c^{5/4} \sqrt {a+c x^4}} \\ \end{align*}

Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.

Time = 10.07 (sec) , antiderivative size = 120, normalized size of antiderivative = 0.45 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\frac {\left (3 c d^2-a e^2\right ) x \sqrt {1+\frac {c x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{4},\frac {1}{2},\frac {5}{4},-\frac {c x^4}{a}\right )+e x \left (e \left (a+c x^4\right )+2 c d x^2 \sqrt {1+\frac {c x^4}{a}} \operatorname {Hypergeometric2F1}\left (\frac {1}{2},\frac {3}{4},\frac {7}{4},-\frac {c x^4}{a}\right )\right )}{3 c \sqrt {a+c x^4}} \]

[In]

Integrate[(d + e*x^2)^2/Sqrt[a + c*x^4],x]

[Out]

((3*c*d^2 - a*e^2)*x*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/4, 1/2, 5/4, -((c*x^4)/a)] + e*x*(e*(a + c*x^4) +
 2*c*d*x^2*Sqrt[1 + (c*x^4)/a]*Hypergeometric2F1[1/2, 3/4, 7/4, -((c*x^4)/a)]))/(3*c*Sqrt[a + c*x^4])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 1.33 (sec) , antiderivative size = 200, normalized size of antiderivative = 0.76

method result size
elliptic \(\frac {e^{2} x \sqrt {c \,x^{4}+a}}{3 c}+\frac {\left (d^{2}-\frac {a \,e^{2}}{3 c}\right ) \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+\frac {2 i e d \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(200\)
default \(\frac {d^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}+e^{2} \left (\frac {x \sqrt {c \,x^{4}+a}}{3 c}-\frac {a \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{3 c \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}\right )+\frac {2 i e d \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}\, \sqrt {c}}\) \(266\)
risch \(\frac {e^{2} x \sqrt {c \,x^{4}+a}}{3 c}-\frac {\frac {a \,e^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {3 c \,d^{2} \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}-\frac {6 i d \sqrt {c}\, e \sqrt {a}\, \sqrt {1-\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \sqrt {1+\frac {i \sqrt {c}\, x^{2}}{\sqrt {a}}}\, \left (F\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )-E\left (x \sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}, i\right )\right )}{\sqrt {\frac {i \sqrt {c}}{\sqrt {a}}}\, \sqrt {c \,x^{4}+a}}}{3 c}\) \(271\)

[In]

int((e*x^2+d)^2/(c*x^4+a)^(1/2),x,method=_RETURNVERBOSE)

[Out]

1/3*e^2*x*(c*x^4+a)^(1/2)/c+(d^2-1/3*a/c*e^2)/(I/a^(1/2)*c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a
^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)*EllipticF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)+2*I*e*d*a^(1/2)/(I/a^(1/2)*
c^(1/2))^(1/2)*(1-I/a^(1/2)*c^(1/2)*x^2)^(1/2)*(1+I/a^(1/2)*c^(1/2)*x^2)^(1/2)/(c*x^4+a)^(1/2)/c^(1/2)*(Ellipt
icF(x*(I/a^(1/2)*c^(1/2))^(1/2),I)-EllipticE(x*(I/a^(1/2)*c^(1/2))^(1/2),I))

Fricas [A] (verification not implemented)

none

Time = 0.09 (sec) , antiderivative size = 114, normalized size of antiderivative = 0.43 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\frac {6 \, a \sqrt {c} d e x \left (-\frac {a}{c}\right )^{\frac {3}{4}} E(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (3 \, c d^{2} - 6 \, a d e - a e^{2}\right )} \sqrt {c} x \left (-\frac {a}{c}\right )^{\frac {3}{4}} F(\arcsin \left (\frac {\left (-\frac {a}{c}\right )^{\frac {1}{4}}}{x}\right )\,|\,-1) + {\left (a e^{2} x^{2} + 6 \, a d e\right )} \sqrt {c x^{4} + a}}{3 \, a c x} \]

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="fricas")

[Out]

1/3*(6*a*sqrt(c)*d*e*x*(-a/c)^(3/4)*elliptic_e(arcsin((-a/c)^(1/4)/x), -1) + (3*c*d^2 - 6*a*d*e - a*e^2)*sqrt(
c)*x*(-a/c)^(3/4)*elliptic_f(arcsin((-a/c)^(1/4)/x), -1) + (a*e^2*x^2 + 6*a*d*e)*sqrt(c*x^4 + a))/(a*c*x)

Sympy [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 1.30 (sec) , antiderivative size = 124, normalized size of antiderivative = 0.47 \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\frac {d^{2} x \Gamma \left (\frac {1}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{4}, \frac {1}{2} \\ \frac {5}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {5}{4}\right )} + \frac {d e x^{3} \Gamma \left (\frac {3}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {3}{4} \\ \frac {7}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{2 \sqrt {a} \Gamma \left (\frac {7}{4}\right )} + \frac {e^{2} x^{5} \Gamma \left (\frac {5}{4}\right ) {{}_{2}F_{1}\left (\begin {matrix} \frac {1}{2}, \frac {5}{4} \\ \frac {9}{4} \end {matrix}\middle | {\frac {c x^{4} e^{i \pi }}{a}} \right )}}{4 \sqrt {a} \Gamma \left (\frac {9}{4}\right )} \]

[In]

integrate((e*x**2+d)**2/(c*x**4+a)**(1/2),x)

[Out]

d**2*x*gamma(1/4)*hyper((1/4, 1/2), (5/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(5/4)) + d*e*x**3*gamma(
3/4)*hyper((1/2, 3/4), (7/4,), c*x**4*exp_polar(I*pi)/a)/(2*sqrt(a)*gamma(7/4)) + e**2*x**5*gamma(5/4)*hyper((
1/2, 5/4), (9/4,), c*x**4*exp_polar(I*pi)/a)/(4*sqrt(a)*gamma(9/4))

Maxima [F]

\[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{2}}{\sqrt {c x^{4} + a}} \,d x } \]

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="maxima")

[Out]

integrate((e*x^2 + d)^2/sqrt(c*x^4 + a), x)

Giac [F]

\[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\int { \frac {{\left (e x^{2} + d\right )}^{2}}{\sqrt {c x^{4} + a}} \,d x } \]

[In]

integrate((e*x^2+d)^2/(c*x^4+a)^(1/2),x, algorithm="giac")

[Out]

integrate((e*x^2 + d)^2/sqrt(c*x^4 + a), x)

Mupad [F(-1)]

Timed out. \[ \int \frac {\left (d+e x^2\right )^2}{\sqrt {a+c x^4}} \, dx=\int \frac {{\left (e\,x^2+d\right )}^2}{\sqrt {c\,x^4+a}} \,d x \]

[In]

int((d + e*x^2)^2/(a + c*x^4)^(1/2),x)

[Out]

int((d + e*x^2)^2/(a + c*x^4)^(1/2), x)